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Recently we found strong evidence in favor of a BCS-like condensation of excitons in 1T-TiSe2 �Cercellier
et al., Phys. Rev. Lett. 99, 146403 �2007��. Theoretical photoemission intensity maps have been generated by
the spectral function calculated within the exciton condensate phase model and set against experimental
angle-resolved photoemission spectroscopy data. The scope of this paper is to present the detailed calculations
in the framework of this model. They represent an extension of the original excitonic insulator phase model of
Jérome et al. �Phys. Rev. 158, 462 �1967�� to three dimensional and anisotropic band dispersions. A detailed
analysis of its properties and comparison with experiment is presented. Finally, the disagreement with density-
functional theory is discussed.
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I. INTRODUCTION

In the early 1960s, a new insulating phase was predicted
to possibly exist at low temperature in solids having small
energy gaps. Jérome et al.1 published an extended study of
this phase developing a BCS-like theory of its ground state.
However, at that time an experimental realization of this
phase was missing.

The excitonic insulator phase may occur in a semimetallic
or semiconducting system exhibiting a small �negative, re-
spectively, positive� gap. Indeed, for a low carrier density,
the Coulomb interaction is weakly screened, allowing there-
fore bound states of holes and electrons, called excitons, to
build up in the system. If the binding energy EB of such pairs
is larger than the gap EG, the energy to create an exciton
becomes negative, so that the ground state of the normal
phase becomes unstable with respect to the spontaneous for-
mation of excitons. According to Jérome et al.,1 at low tem-
perature, these excitons may condense into a macroscopic
coherent state in a manner similar to Cooper pairs in conven-
tional BCS superconductors. Kohn2 argued that exciton con-
densation may lead to the formation of charge-density waves
�CDW� of purely electronic origin �neglecting any lattice
distortion�, characterized by an order parameter.

1T-TiSe2 is a layered transition-metal dichalcogenide ex-
hibiting a commensurate �2�2�2� CDW �Ref. 3� accom-
panied by a periodic lattice distortion below the transition
temperature of Tc�200 K. The origin of its CDW phase
was controversial for a long time. Different scenarios have
been proposed,4,5 with the best candidates being a band Jahn-
Teller effect6 and the excitonic insulator phase. Angle-
resolved photoemission spectroscopy �ARPES� studies, evi-
dencing directly the CDW, gave support to the former7,8 or
the latter mechanism.9 In 2006, superconductivity has been
discovered in TiSe2 upon Cu intercalation, providing a re-
newed interest in this system.10 Furthermore superconductiv-
ity also occurs for the pure compound under pressure.11 Re-

cently, we presented ARPES data on 1T-TiSe2.12 Theoretical
photoemission intensity maps generated by the spectral func-
tion computed within the exciton condensate phase model
gave strong evidence for exciton condensation in this mate-
rial. To our knowledge, 1T-TiSe2 is the only presently known
candidate for a low-temperature phase transition to the exci-
ton condensate state without the influence of any external
parameters other than temperature. Indeed, as pressure is in-
creased above 6 kbar on TmSe0.45Te0.55 samples �allowing to
control the gap size and thus the energy necessary to create
excitons�, a transition to an insulating phase happens, whose
origin can also be explained with exciton condensation.13 In
this context Bronold and Fehske14 proposed an effective
model for calculating the phase boundary of a pressure-
induced excitonic insulator, in the spirit of a crossover from
a Bose-Einstein to a BCS condensate.

In this work, we adhere to the previously motivated
mechanism of the exciton condensate phase for the origin of
the CDW. We present the theory from which we compute the
spectral function used to describe photoemission on TiSe2
and provide further support for the exciton condensate phase
scenario. In Sec. II, we extend the model worked out by
Jérome et al.1 for one dimension to three dimensional and
anisotropic band dispersions. The Green’s functions of the
different bands are derived here. Section III first introduces
the spectral function and its relation to photoemission. Then
spectral weights �SWs� and positions of the different bands
are analyzed within this model. These theoretical results are
compared to ARPES data of TiSe2. Finally, the chemical
potential and discrepancies with density-functional theory
�DFT� are discussed before we conclude in Sec. IV.

II. EXCITON CONDENSATE MODEL

In this section, we present the model from which the spec-
tral function describing photoemission on TiSe2 has been
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computed. Jérome et al.1 already treated in detail the case of
a one-dimensional excitonic insulator. In their work, they
consider a single valence band and a single conduction band,
which are both isotropic. However, for comparison with real
experiment on the electronic structure of TiSe2, an extension
of the model to three dimensions with anisotropic band dis-
persions is required.

A. Description of the model

The Hamiltonian of the model is composed of a one-
electron part H0 and a Coulomb interaction part W. The one-
electron part contains the dispersions of a single valence
band �v�k�� and of three conduction bands �c

i �k�� �i=1,2 ,3�,

H0 = �
k�

�v�k��a†�k��a�k�� + �
k�,i

�c
i �k� + w� i�bi

†�k��bi�k�� .

Here a†�k�� and bi
†�k�� are operators creating electrons with

wave vector k� in the valence band and with wave vector k�
+w� i in the conduction band labeled i, respectively. In the
case of TiSe2, we consider the valence band �mainly of Se 4p
character� giving rise to a hole pocket centered at � and three
conduction bands �mainly of Ti 3d character�, equivalent by
symmetry, giving rise to electron pockets centered at the dif-
ferent L points of the Brillouin zone �BZ� �see Fig. 1 for a
sketch of high symmetry points in the BZ�. The � point is
separated from the L points by the three spanning vectors
w� i=�L. The band dispersions have been chosen of the form

�previous expressions12 were restricted to the kx axis�

�v�k�� = �2kx
2 + ky

2

2mv
+ tv cos�2�kz

2k�A
� + �v

0,

�c
i �k�� =

�2

2mL
��k� − w� i� · e�i	�2 +

�2

2mS
��k� − w� i� · e�i��2

+ tc cos�2��kz − wiz�
2k�A

� + �c
0,

which describe well the bands near their extrema as they are
measured in ARPES.12 The unit vectors e�i	 and e�i�, pointing
along and perpendicular to the long axis of the ellipses, re-
spectively, form a local in-plane basis for the electron pock-
ets at the different L points. Thus, e�i	 =w� i	 / 	wi		, where w� i	

= �wix ,wiy ,0� and e�i�=w� i� / 	wi�	 where we used the vector
product w� i�= �0,0 ,1��w� i. mv, mL and mS are the effective
masses of the valence-band holes and of the conduction-band
electrons along the long and short axes of the electron pock-
ets, respectively. The hopping parameters tv and tc represent
the amplitudes of the dispersions perpendicular to the surface
and k�A is the distance in reciprocal space between � and the
A point. Parameters �v

0 and �c
0 are the band extrema of the

bands.
The interaction part W contains only the direct Coulomb

interaction between electrons in the valence and the conduc-
tion bands,

W = �
q� ,i

�a�q��Vc�q���b,i
† �q� ,w� i�

where we have introduced partial electron density operators

�a�q�� = �
k�

a†�k� + q��a�k��, �b,i�q� ,w� i� = �
k�

bi
†�k� + q��bi�k�� .

The above sums run over the first BZ. Finally the Coulomb
potential reads

Vc�q�� =
4�e2

��q��q2 ,

with � being the dielectric function of the material.
In fact for 1T-TiSe2 there are three �4p-derived and Se-

related valence� bands at � near the Fermi energy. However,
within a minimal model, we include only the highest lying
valence band �as the valence band� in the calculations.
Finally, the chemical potential is not explicitly included in
the model but it will be nonetheless discussed at the end of
Sec. III.

B. Exciton physics

In this paragraph, we introduce the formulation of the
exciton physics in a similar way to Babichenko and
Kiselev.15 The aim of this discussion is to give a better in-
sight into the concept of the excitons. We start from the field
operator �a�r��=�k�e

ik�·r�a�k�� which creates a hole in the va-
lence band at position r� and �bi

† �r��=�k�e
−i�k�+w� i�·r�bi

†�k�� which
creates an electron in the conduction band i at position r�.

� �
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FIG. 1. Schematic picture of the 1T-TiSe2 bands considered in
this model �near the Fermi energy EF�. �a� Top view of the BZ
�perpendicular to kz�. The Fermi surface has a hole pocket at � and
three symmetry equivalent electron pockets at L, separated from �
by the spanning vectors w� i , i=1,2 ,3. The side view of the BZ
helps to situate the high-symmetry points. �b� Schematic cut along
the �L direction, showing the dispersions of the valence band �at ��
and one conduction band �at L�.
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From these two entities, we construct the exciton creation
operator

A†�r�,r��,w� i� = �bi

† �r���a�r��� = �
k�1,k�2

e−i�k�1+w� i�·r�eik�2·r��bi
†�k�1�a�k�2� .

It is more appropriate to describe the exciton in terms of

relative u� and center of mass R� coordinates. Due to the an-
isotropy of the electron pockets at L, we need to distinguish
the in-plane coordinates parallel and perpendicular to the
long axis of the ellipses, w� i	. For simplicity, we admit that w� i	

is parallel to the x axis �for the other ellipses it is possible to
generalize the following arguments using the e�i	 and e�i� unit
vectors�. Then we write u� =r�−r�� and R	=m	�r	� /M	

+m	r	 /M	 with M	=m	� +m	 for 	=x ,y. In terms of the
previously defined masses we have m	� =mv since the hole
pocket at � is isotropic, and mx=mL and my =mS. Then, the
exciton creation operator may be redefined as

A†�R� ,u� ,w� i� = �
Q� ,p�

e−i�Q� +w� i�·R
�
exp�− ip� · u� − i�

	

ma�

M	

wi	u	�
� bi

†�p	 +
m	

M	

Q	�a�p	 −
m	�

M	

Q	�
using the notation a�k	� instead of a��kx ,ky��
a�k��. The

center of mass momentum Q� =k�1−k�2 and the relative mo-
mentum p	=m	k1,	 /M	+m	�k2,	 /M	 arise naturally.

At this point, we can expand the operator b†a in terms of
the exciton creation operator A† in reciprocal space

bi
†�p	 +

m	

M	

Q	�a�p	 −
m	�

M	

Q	� = �



�

��p� ,w� i�A


†�Q� ,w� i� ,

�1�

where the coefficients appearing on the right-hand side are
the eigenfunctions of the hydrogen atom. In other words, the

operator A

†�Q� ,w� i� creates an exciton having a center of mass

momentum Q� . The electron-hole bound state is described by
the hydrogen state �
 having the energy E
=�e4 /8�2
2,
with � being the dielectric constant and 1 /�=�	1 /2�	 be-
ing the reduced mass with 1 /�	=1 /m	+1 /m	� . According to
Babichenko and Kiselev15 �and generalizing to anisotropic
conduction bands�, this hydrogen state obeys to

��
	

p	
2

2�	

+ E
��

��p� ,w� i� = �

p��

Vc�p� − p����

��p��,w� i� .

Due to orthogonality of the hydrogen wave functions, rela-
tion �1� can be inverted to

A

†�Q� ,w� i� = �

p�
�


��p� ,w� i�bi
†�p	 +

m	

M	

Q	�a�p	 −
m	�

M	

Q	�
which is the Fourier transform of the exciton creation opera-
tor. We now compute the equations of motion for annihila-
tion operators.

C. Equations of motion for the Green’s functions

With the help of the Hamiltonian H=H0+W, we compute
the equation of motion for our electron annihilation operators

i
�

�t
a�p� ,t� = �a�p� ,t�,H� = �v�p��a�p� ,t�

+ �
q� ,k�,i

Vc�q��a�p� + q� ,t�bi
†�k�,t�bi�k� − q� ,t� ,

i
�

�t
bi�p� ,t� = �bi�p� ,t�,H� = �c

i �p� + w� i�bi�p� ,t�

+ �
q� ,k�

Vc�q��a†�k� + q� ,t�a�k�,t�bi�p� + q� ,t� . �2�

We now introduce the Green’s functions for the valence and
the conduction bands

Gv�k�,t,t�� = �− i��Ta�k�,t�a†�k�,t��� ,

Gc
i �k�,t,t�� = �− i��Tbi�k�,t�bi

†�k�,t��� ,

where we used the time ordering operator T. Their equations
of motion are derived directly from Eq. �2�,

�i
�

�t
− �v�p���Gv�p� ,t,t��

= 
�t − t�� − i�
q� ,k�,i

Vc�q���Ta�p� + q� ,t�bi
†�k�,t�

�bi�k� − q� ,t�a†�p� ,t��� ,

�i
�

�t
− �c

i �p� + w� i��Gc
i �p� ,t,t��

= 
�t − t�� − i�
q� ,k�

Vc�q���Ta†�k� + q� ,t�a�k�,t�

�bi�p� + q� ,t�bi
†�p� ,t��� .

Using Wick’s theorem we simplify the four-operator aver-
ages �¯� by neglecting correlations, i.e., keeping only the
lowest-order terms. The calculation is similar for both
Green’s functions. We get three two-operator contributions,
namely,

�Ta�p� + q� ,t�bi
†�k�,t�bi�k� − q� ,t�a†�p� ,t���

= �a�p� + q� ,t�bi
†�k�,t���Tbi�k� − q� ,t�a†�p� ,t���

− �a�p� + q� ,t�bi�k� − q� ,t���Tbi
†�k�,t�a†�p� ,t���

− �Ta�p� + q� ,t�a†�p� ,t����bi�k� − q� ,t�bi
†�k�,t�� ,

out of which only the first one remains �the second one is
zero and the last one is a Hartree term which we consider as
already included in the measured dispersions�, so that the
corresponding equations of motion become

SPONTANEOUS EXCITON CONDENSATION IN 1T-… PHYSICAL REVIEW B 79, 045116 �2009�

045116-3



�i
�

�t
− �v�p���Gv�p� ,t,t��


 
�t − t�� + i�
q� ,k�,i

Vc�q���bi
†�k�,t�a�p� + q� ,t��

��Tbi�k� − q� ,t�a†�p� ,t��� ,

�i
�

�t
− �c

i �p� + w� i��Gc
i �p� ,t,t��


 
�t − t�� − i�
q� ,k�

Vc�q���bi�p� + q� ,t�a†�k� + q� ,t��

��Ta�k�,t�bi
†�p� ,t��� . �3�

At this point, to go further, we need to introduce the concept
of the condensate phase.

D. Condensate phase

When the energy gap is smaller than the exciton binding
energy, the energy necessary to create an exciton becomes
negative and the normal ground state becomes unstable to-
ward the spontaneous formation of excitons. Once the tem-
perature is low enough, these excitons may condense into a
macroscopic coherent state analogous to that of Cooper pairs
in the BCS theory of superconductivity.

The first average on the right-hand side of Eq. �3�, for k�
= p� +q� , can be expressed by the exciton creation operator
�Eq. �1�� as

�bi
†�p� + q� ,t�a�p� + q� ,t�� = �




�

��p� + q� ,w� i��A


†�0,w� i��


 �0
��p� + q� ,w� i��A0

†�0,w� i�� .

At sufficiently low temperature, only the lowest lying exci-
tonic level is populated.

By analogy with the BCS theory, we can identify the av-
erage in this last equation with the anomalous Green’s func-
tions after appropriate variable substitutions. These new
functions are defined as follows:

Fi�k�,t,t�� = �− i��Tbi�k�,t�a†�k�,t��� ,

Fi
†�k�,t,t�� = �− i��Ta�k�,t�bi

†�k�,t��� . �4�

They describe the scattering of a valence electron into the
conduction band or inversely. Pushing further the analogy,
we introduce the order parameter �i describing the conden-
sate

�i�p�� = − i�
q�

Vc�q���Fi
†�p� + q� ,t,t��

= �
q�

Vc�q���bi
†�p� + q� ,t�a�p� + q� ,t��


 �
q�

Vc�q���0
��p� + q� ,w� i��A0

†�0,w� i�� �5�

�here the anomalous Green’s-function definition �4� and Eq.

�1� have been used�. It quantifies the intensity of exciton
formation between the valence band and the conduction band
labeled i. Moreover, it characterizes the state of the system in
the sense that, when the order parameter is different than
zero, exciton condensation drives the system into the CDW
phase �see Sec. III for further discussion�.

E. Green’s function of the valence band

With the help of these new elements, we can go back to
Eq. �3�. In the particular case of the Green’s function of the
valence band, we obtain

�i
�

�t
− �v�p���Gv�p� ,t,t�� = 
�t − t�� − �

i

�i�p� + q��Fi�p� ,t,t�� .

�6�

In order to solve this equation for Gv, we need to find a
similar expression for the anomalous Green’s function by
computing its equation of motion. This procedure results in
the following relation:

�i
�

�t
− �c

i �p� + w� i��Fi�p� ,t,t�� = − �i�p��Gv�p� ,t,t�� , �7�

where we have again identified the order parameter.
Converting the time dependence into a �imaginary� fre-

quency z dependence with a Fourier transform allows us to
solve the system of equations given by Eqs. �6� and �7� for
the Green’s function of the valence band,

Gv�p� ,z� = �z − �v�p�� − �
i

��i�p���2

z − �c
i �p� + w� i�

�−1

. �8�

F. Green’s function of the conduction band

Calculating the Green’s function of the conduction band
involves a treatment similar to that of the valence band.
From Eq. �3� and with definitions �4� and �5� we get

�i
�

�t
− �c

i �p� + w� i��Gc
i �p� ,t,t�� = 
�t − t�� − �i

��p��Fi
†�p� ,t,t�� .

�9�

The equation of motion of F† is obtained with help of Eq. �2�
and the Wick’s theorem,

�i
�

�t
− �a�p���Fi

†�p� ,t,t��

= − i�
k�,q� ,j

Vc�q���Ta�p� + q� ,t�bj
†�k�,t�bj�k� − q� ,t�bi

†�p� ,t���


 − i�
q� ,j

Vc�q���a�p� + q� ,t�bj
†�p� + q� ,t��

��Tbj�p� ,t�bi
†�p� ,t��� . �10�

The averages on the right-hand side bring into play three b
operators and present an off-diagonal term mixing bi with bj

†

operators. When j= i, the last average lets appear the Green’s
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function Gb
i while i� j terms involve new Green’s functions

representing the scattering of an electron from one conduc-
tion band to another one �usually called multivalley scatter-
ing�,

Hij�k�,t,t�� = �− i��Tbi�k�,t�bj
†�k�,t��� .

Their equation of motion reads

�i
�

�t
− �c

i �p� + w� i��Hij�k�,t,t�� = − �i
��p��Fj

†�p� ,t,t�� . �11�

Thus, with the help of the definition of the order parameter
�, replacing this last definition into Eq. �10� results in

�i
�

�t
− �a�p���Fi

†�p� ,t,t�� = − �i�p��Gc
i �p� ,t,t��

− �
j�i

� j�p��Hji�p� ,t,t�� . �12�

Equations �9�, �11�, and �12� together build a system of equa-
tions which can be solved with respect to Gc

i , providing us
with the following expression after a Fourier transform to
frequency space:

Gc
i �p� + w� i,z� = �z − �c

i �p� + w� i�

−
��i�p���2

�z − �v�p��� − �
j�i

�� j�p���2

z − �c
j�p� + w� j�

�
−1

. �13�

The Green’s functions of the valence band �8� and of the
conduction bands �13� have been already written in our pre-
vious paper12 without the mathematical derivation developed
here in details.

III. RESULTS AND DISCUSSIONS

A. Spectral function

In the context of photoemission, the spectral function
A�p� ,�� plays a central role. It is directly proportional to the
imaginary part of the Green’s function and in the case of the
one-electron Green’s functions as defined in Sec. II, it de-
scribes the one-electron removal spectrum.

For the exciton condensate model, we distinguish the
spectral function of the valence band,

Av�p� ,�� = −
1

�
Im�Gv�p� ,� + i
��

�
 is here an infinitesimal real quantity� and that of the con-
duction band

Ac
i �p� + w� i,�� = −

1

�
Im�Gc

i �p� ,� + i
�� .

To simplify further calculations, we rewrite the Green’s func-
tions �Eqs. �8� and �13�� in the following forms:

Gv�p� ,z� =
1

D�p� ,z��i

�z − �c
i �p� + w� i�� , �14�

Gc
i �p� ,z� =

1

D�p� ,z���z − �v�p����
j�i

�z − �c
j�p� + w� j��

− �
m,j�i

�� j�p���2��ijm��z − �c
m�p� + w� j��� �15�

��ijm is the permutation symbol�. The denominator D, com-
mon to all Green’s functions, is

D�p� ,z� = �z − �v�p����
i

�z − �c
i �p� + w� i��

− �
i

��i�p���2�
j�i

�z − �c
j�p� + w� j��

= �
	=1

4

�z − �	�p��� �16�

�here the index 	 refers to the four zeros of the denominator
D, while the other indices refer to the three conduction
bands�. In the last line, the denominator is factorized in terms
involving its four �real� zeros �	�p�� �which are implicitly
functions of the order parameter ��. These zeros can be cal-
culated exactly. However their analytical forms are too long
to be written here.

This allows us to break apart the Green’s functions �14�
and �15� into rational expressions with minimal denomina-
tors, so that we can use the Sokhotsky’s formula

1

x − x0 + i�
= P 1

x − x0

− i�
�x − x0�

�P denotes the principal part� and write the spectral functions
in rather simple forms

Av�p� ,�� = �
	=1

4

P	
v�p��
„� − �	�p��… ,

Ac
i �p� + w� i,�� = �

	=1

4

P	
ci�p��
„� − �	�p��… ,

where the weights P	�p�� �which are also implicitly functions
of the order parameter �� associated to the poles �	 are

P	
v�p�� =

�i
��	 − �c

i �p� + w� i��

���	
��	 − ���

,
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P	
ci�p�� =

��	 − �v�p����
n�i

��	 − �c
n�p� + w� n��

�
��	

��	 − ���

−

�
m,n�i

��n�p���2��inm���	 − �c
m�p� + w� n��

�
��	

��	 − ���
.

Until now, to ensure the generality of the theory, we always
kept the k� dependence of the order parameter ��k��. However,
in the practical analysis, which will follow, we will use a
k�-independent order parameter estimated from experiment.

B. Spectral function and photoemission

Within the sudden approximation, the contributions to the
photoemission intensity are the spectral function, the matrix
elements, and the Fermi-Dirac distribution. In this paper we
concentrate on the spectral function well established in Sec.
III A.

We now choose to fix the parameters that describe the
band dispersions. They will take the values16 determined
from our previous ARPES study12 on samples exhibiting a
slight Ti overdoping ��1%�. The case of an ideal compound
�without overdoping�, in relation to DFT calculations, will be
discussed in Sec. III D. The dispersions and the spectral
weight curves presented below will be calculated along the
high-symmetry directions �M and AL only, which coincide
with the long axis of the electron pocket ellipses. This choice
is motivated by the fact that the experimental intensity maps
of Sec. III C were also measured in these directions and that
the most important effects of the exciton condensate are vis-
ible along �M and AL. From the spectral functions, we can
derive the first important information. The zeros of their de-
nominator D are the poles of the Green’s functions and
therefore represent the renormalized electronic band posi-
tions in the system. Noting that a zero order parameter � in
Eq. �16� results in band positions that are not renormalized,
one realizes that � is a good indicator of the strength of this
renormalization. Moreover, since this denominator is the
same for both the valence and the conduction bands, we see
that the valence band at � is backfolded at L and that the
conduction bands at L are backfolded at � �as expected from
the electron-hole coupling�. This is a first indication of the
CDW phase in the system. The situation for the band posi-
tions �not considering their spectral weight� is illustrated in
Fig. 2. Part �a� depicts a cut through the Fermi surface �FS�
�around the � and L points� in the normal phase, composed
of the valence-band hole pocket �red� and three �symmetry
equivalent� electron pockets �blue�. In the CDW phase,
which is characterized by an order parameter ��0 meV,
this FS changes into that of Fig. 2�b�. Via the electron-hole
coupling the L points become equivalent to � �not yet con-
sidering the spectral weights� and all three conduction bands
are backfolded onto the valence band. In parallel, in Figs.
2�c�–2�e� we show the associated dispersions. The labels
v1 ,c1 ,c2 ,c3 refer to the four different poles of the Green’s

functions identified as the valence band �v1� and the three
symmetry equivalent conduction bands �c1 ,c2 ,c3�. To facili-
tate the comparison, in the normal phase, we superimpose
the valence band �v1 located at �, red continuous line� and
the conduction bands �blue continuous line for c1 and blue
dashed line for c2 ,c3, normally located at the L points but
shifted here to ��. For the CDW phase, we distinguish two
cases, one with a low value of the order parameter �Fig. 2�d�,
�=20 meV� and one with a high value of the order param-
eter �Fig. 2�e�, �=100 meV�. These values are reasonable in
comparison with experiment and help to understand how the
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FIG. 2. �Color online� Schematic picture of the band positions in
the model �near EF� in the normal phase and in the CDW phase.
Wave vectors are expressed in a multiple of �M. �a� In the normal
phase ��=0 meV�, the Fermi surface composed of the valence
band at � �in red� and three symmetry equivalent conduction bands
at L �in blue�. �b� In the CDW phase ���0 meV�, � becomes
equivalent to L. The electron pockets at L, backfolded to �, produce
“flowerlike” Fermi surfaces at each newly equivalent high-
symmetry point. �c� Dispersions calculated parallel to �M �see Fig.
1�a�� around � and parallel to AL1 around the three L points in the
normal phase plotted on the same graph �the minima of the different
conduction bands c1 ,c2 ,c3 have been displaced from the L points to
� on the graph�. �d� and �e� Dispersions around � and along �M in
the CDW phase for �=20 meV, respectively, �=100. In the CDW
phase, � and L become equivalent concerning the dispersions.
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CDW transition sets in. Once the order parameter increases
to a nonzero value, there is a strong change in the band
dispersions. The valence band v1 and the conduction band c3
split, opening a gap between them. As the order parameter
increases to �=100 meV, v1 and c3 repel each other further,
while c1 and c2 stay at their original positions.

We now turn to the discussion of the extrema of the
bands. Figure 3 presents the band extrema as a function of
the order parameter �. We see that, except for small values
of the order parameter, they display a linear behavior �this
can be shown analytically from the denominator in Eq. �16�
for k� exactly at � and L where the three original conduction
bands have the same energy�. Among the three conduction
bands, only one �c3� shifts away from the Fermi energy. Its
two minima �blue line� also increase linearly. Compared to
the conduction band c3, the valence-band maximum �v1� fol-
lows the inverse behavior, thereby opening a gap below EF.

It is important to realize that when considering three con-
duction bands instead of one, the system remains in a semi-
metallic state at low temperature rather than evolving into an
insulating state since the gap opens below the Fermi energy.
Therefore, strictly speaking, the denomination “excitonic in-
sulator phase” in this context is misleading and we rather
adopted the expression “exciton condensate phase.”

Besides the position of the bands the spectral function
contains additional crucial information, namely, the SW car-
ried by each band in the process of one-electron removal
probed by photoemission. It is related to the numerator of the
spectral function. We now add this feature to the previous
figure and obtain Fig. 4, where the SW of the bands is indi-
cated in grayscale. The evolution from the normal state �Fig.
4�a�� to the CDW state with an order parameter of 20 meV
�Fig. 4�b�� and 100 meV �Fig. 4�c�� is shown.

We immediately see �Fig. 4� that, with respect to the SW,
the backfolding is in fact incomplete even at a large value of
the order parameter. In the CDW phase with an order param-
eter of �=100 meV �Fig. 4�c��, at �, the original valence
band looses SW in favor of the backfolded conduction band
�c3�. At L, the situation is different. Two backfolded bands
appear now, a symmetry equivalent conduction band �c3� and
the valence band �v1�, taking their SWs from the original
conduction band �c1�. The dashed lines indicate a conduction
band �c1� backfolded to �, which has a negligibly small SW
�see below�.

In Fig. 5, we focus on the SW of the bands at � and L
�SW of the conduction band c2 is not represented here since

it is exactly zero for every k along the �M and AL direc-
tions�. Graphs 5�a� and 5�b� display the SW of the valence
band �v1� at � and L, respectively, for different values of the
order parameter �. Graphs 5�c�,5�d� and 5�e�,5�f� show the
SW for bands c3 and c1, respectively. These graphs allow us
to quantify the observations made above. At �, the original
valence band gives 60% �graph 5�c�� of its SW to the back-
folded conduction band, keeping 40% �graph 5�a�� for itself.
At L, the situation is more complicated since three bands
�v1 ,c1 ,c3� share now the SW. The original conduction band
�c1� keeps a minimum of 67% of SW �graph 5�f��, while the
other two backfolded bands �c3 and v1� divide among them-
selves the remaining 33% �graphs 5�b� and 5�d��. At �, the
backfolded conduction band �c1� has a small nonzero SW as
shown in graph 5�e� �it is less than 1% for the values of the
order parameter considered here�.

We also present the graphs for �=20 meV. We see that

there is a large SW loss �more than 80% at k� =0� Å−1� in the
valence band, even larger than that for �=100 meV �Fig.
5�a��. What happens can be seen as follows. Going back to
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FIG. 3. �Color online� Extrema of the renormalized bands as a
function of the order parameter � �left�. Position of these extrema
on the band dispersions �right�.
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FIG. 4. Band dispersions with their corresponding spectral
weight at � and L, along �M and AL directions, respectively. Graph
�a� describes the normal phase ��=0 meV�, �b� the CDW phase
with moderate excitonic effects ��=20 meV�, and �c� the CDW
phase with strong excitonic effects ��=100 meV�. The dashed
lines indicate a band �c1� having a small nonzero SW �see text�.
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Fig. 4, if we observe the evolution at � �i.e., the left panels�
of the series of graphs 4�a�, 4�b�, and 4�c� as a function of �,
we see that at �=20 meV the shape of the valence band tries
to stay the same as for �=0 meV. This is achieved by a
reduced SW of v1 and an increased SW of c3. At �
=100 meV the dispersions are sufficiently different from the
nonrenormalized ones to carry more SW.

In other words, for small values of the order parameter,
the SW will be distributed along the parts of the dispersions
corresponding mainly to the nonrenormalized ones. A similar
situation happens at L, as can be seen in Fig. 4 between
bands v1, c1, and c3. But this time, the original band �in the
normal phase� is the conduction band c1, so that for small
values of the order parameter, its SW is shared among v1, c1,
and c3. It should be noted that from photoemission data it is
difficult to extract information concerning �thermally occu-
pied� states above the Fermi energy �set to 0 eV here�, so that

SW of band c3 is hardly measured in experiment.12

C. Comparison with experiment

The purpose of this section is to make a link with our
previous paper. Therefore we further analyze experimental
ARPES intensity maps12 in the light of the discussions of
Sec. III B �calculated intensity maps are not reproduced here-
after; see Ref. 12 for more details�. The data were collected
at the Swiss Light Source with a photon energy of 31 eV on
TiSe2 samples. At this photon energy, the normal-emission
spectra correspond to states located close to the � point but
not exactly. Therefore we will use the surface notation �̄ for
these measured intensity maps.

Figure 6 presents comparisons between the theoretical
�left� and experimental �right� electronic structures at � and
�̄, respectively. The experimental intensity maps at T
=250 K �Fig. 6�a�� and T=65 K �Fig. 6�b�� are compared to
calculated bands with �=25 meV and �=75 meV, respec-
tively. These values for the order parameter in the room-

FIG. 5. �Color online� Spectral weights of the bands at � and L,
along �M and AL directions, respectively, for � values of 0, 20, and
100 meV. Graphs �a� and �b� describe the valence band �v1� at �
and its backfolded version at L, respectively. Graphs �c� and �d�
describe the conduction band c3 at � �where it follows the top of the
original valence band� and L, respectively. Graphs �e� and �f� de-
scribe the conduction band c1 at � and L, respectively �where it is
the original conduction band�.
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FIG. 6. �Color online� Comparisons between theoretical and ex-

perimental �h�=31 eV� electronic structures at � and �̄, respec-
tively �see text for explanations of this notation�. �a� The theoretical
bands have been calculated for �=25 meV and the experimental
intensity maps are taken at T=250 K. The continuous black lines
highlight the Se 4p-derived bands not considered in the model,
while the dashed white line indicates the valence band correspond-
ing to v1. �b� The theoretical bands have been calculated for
�=75 meV and the experimental intensity maps are taken at
T=65 K. The dashed black lines indicate the backfolded conduc-
tion band c1 which carries a small nonzero SW �Fig. 5�e��.
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temperature �RT� and low-temperature phases, respectively,
have been chosen to ensure the best visual agreement be-
tween calculated and measured intensity maps.12 This gives
thus an estimation of the size of the order parameter describ-
ing the exciton condensate in TiSe2. At T=250 K on the
experimental side �Fig. 6, right�, the situation is more com-
plicated than in our model. Indeed, there are three
Se 4p-derived valence bands, out of which two �black lines�,
are not considered in our model. The dashed white line cor-
responds to the valence band v1 of the model, which suffers
already SW loss at T=250 K. It flattens at its maximum and
deviates from the parabolic shape of the normal phase dis-
persion �this is clear from an energy distribution curve taken
at k	 =0 Å−1 �not shown here��. On the theoretical side �Fig.
6�a�, left�, the dispersion reproduces well the experiment
when considering an order parameter of �=25 meV. How-
ever, at this temperature, the system should be in the normal
phase.

Nevertheless, as in high-temperature superconductors,
above the critical temperature, we expect fluctuations to per-
sist well above Tc in the exciton condensate phase.17,18 Thus,
this nonzero order parameter above Tc may be understood in
terms of fluctuations. According to the left graph of Fig. 6�a�,
the bottom of the backfolded conduction band c3 appears just
below EF. In parallel, the experiment shows small humps in
momentum distribution curves near EF �not seen in the false
color map here�. These can be attributed to c3, considering
that the Fermi distribution will weaken the SW of this band
on the theoretical dispersion. At T=65 K �Fig. 6�b�, right�,
the valence band in the experimental intensity map shifts to
higher binding energies, in agreement with the theoretical
dispersions calculated for an order parameter �=75 meV
�Fig. 6�b�, left�. Moreover, on the experimental map, some
intensity emerges just below EF �not seen in the false color
map; see Ref. 12�, revealing a dispersive band. Although it
does not appear directly in the corresponding calculation us-
ing 
 peaks, it is reproduced if a finite 30 meV line broad-
ening �lifetime� is introduced. In other words, this dispersive
intensity comes from the combined tails of the maximum of
the valence band v1 �located in the occupied states� and of
the minima of the backfolded conduction band c3 �located in
the unoccupied states�.

Figure 7 presents comparisons between the theoretical
and experimental electronic structures at the Brillouin-zone
boundary. The experimental intensity maps at T=250 K
�Fig. 7�a�� and T=65 K �Fig. 7�b�� are compared to calcu-
lated bands with �=25 meV and �=75 meV, respectively.
At a photon energy of 31 eV, initial states between M and L
are probed �in a free-electron final-state picture, we are not
probing the BZ exactly at L�. Therefore, we will use the M̄
notation for the measured intensity maps below. Substantial
changes �explained by excitonic effects� in the spectra are
evident. At T=250 K �Fig. 7�a��, on the experimental side
�right�, the conduction band, highlighted by the dashed white
line, is well described by the theoretical band c1 �left�. It also
exhibits a decrease in intensity at its bottom, as predicted by
our model �see Fig. 5�f��. Moreover it looks like a band
having a large width and some surprisingly high intensity
persists far from its centroid, even at binding energies of
about 300 meV. These features can be well explained by the

theoretical bands �Fig. 7, left� at �=25 meV. Due to the
finite width of real bands, the conduction band c1 merges
with its close �backfolded� neighbors v1 or c3 �depending on
the position along AL�, resulting in a band broadening. The
residual intensity at high binding energies is explained with
the populated branches of the backfolded valence band v1
�see Fig. 5�b��. Indeed, looking carefully at the lower part of
the experimental map �Fig. 7�a�, right�, one sees that the
residual intensity is larger away from M̄ �this is confirmed by
momentum distribution curves �not shown here��. At T
=65 K �Fig. 7�b��, on the experimental side �right�, a strong
signature of the CDW appears. The valence band is back-
folded at M̄ with a high SW. In fact, even a second
Se 4p-derived valence band �indicated by the lowest lying
black line in the right graph of Fig. 6�a�� participates to the
backfolding at M̄. On the theoretical side, this situation �con-
sidering only the topmost Se 4p-derived valence band� is re-
produced with an order parameter of �=75 meV. The back-
folded valence band v1 is well separated from the conduction
band c1, as in the experiment. It can be clearly seen in the
corresponding experimental intensity map that the conduc-
tion band c1 does not shift with an increasing order param-
eter �see Fig. 3� and looses more SW at its bottom �see Fig.
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FIG. 7. �Color online� Comparisons between theoretical and ex-
perimental �h�=31 eV� electronic structures at the Brillouin-zone
boundary �see text�. �a� The theoretical bands have been calculated
for �=25 meV and the experimental intensity maps are taken at
T=250 K. The dashed white line indicates the conduction band
corresponding to c1. �b� The theoretical bands have been calculated
for �=75 meV and the experimental intensity maps are taken at
T=65 K.
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5�f��. The backfolded conduction band c3 is too far away
from EF in the unoccupied states to be measured by ARPES.
In the model, at L, the intensity of the backfolded valence
band v1 is lower than that of the conduction band c1 for high
values of the order parameter, corresponding to a well-settled
CDW phase �see Figs. 5�b� and 5�f��. In the ARPES mea-
surements presented here, this intensity relation is reversed,
as can be seen on the right graph of Fig. 7�b�. The precise
reason for this matter remains unclear. It can be due to the
fact that we consider only the topmost valence band in our
model. Indeed, a second backfolded valence band appears at
M̄ in the low-temperature measurements �Fig. 7�b�, right�.
Moreover, we have noticed that this intensity relation be-
tween the original and backfolded bands can change from
one sample to another, or even depends on the quality of the
cleaved surface. Further investigations are needed to under-
stand this issue.

D. Further discussions

In the model described in Sec. II, the chemical potential
was not explicitly calculated since it was defined as the zero
energy of the dispersions. To verify whether the chemical
potential shifts when the system enters in the CDW phase,
we have computed the electronic density for the renormal-
ized bands, taking into account their dispersion over the
whole BZ. Due to the parabolic approximation of the band
dispersions around their extrema, we only took into account
electrons having an energy up to 0.5 eV below EF. If we
keep the chemical potential at �=0 eV, a decrease of about
35% of the electronic density results between the normal
phase and the CDW phase with an order parameter �
=75 meV. This discrepancy is reduced to zero if we shift the
chemical potential by +60 meV. This result can be under-
stood with the SW transfers depicted on Fig. 4. At �, when
going from the normal to the CDW phase �from Fig. 4�a� to
Fig. 4�c�� we loose 13% of the SW of the normal phase
�integration of the SWs of Figs. 5�a� and 5�c�� accounting for
the Fermi distribution. At L �from Fig. 4�a� to Fig. 4�c��, after
the CDW transition, we loose 40% of SW in the conduction
band and we acquire 18% of SW in the backfolded valence
band �integration of the SWs of Figs. 5�b�, 5�d�, and 5�f��.
Thus, considering only the high-symmetry directions for il-
lustrative purposes, this results in the 35% of SW missing
when going from the normal to the CDW phase, which can
be recovered by slightly raising the chemical potential
�which affects mostly the conduction band c1�.

This shift would be measurable in photoemission. To have
a detailed knowledge of the chemical potential, one needs to
perform precise ARPES measurements over a wide range of
temperatures. However, this is beyond the scope of this paper
and this will be studied in the future.

In previous ARPES data,12 we extracted �from RT mea-
surements� an overlap between the valence and conduction
bands in the normal phase of 70 meV. DFT calculations
within local-density approximation agree on the semimetallic
nature of TiSe2 but the size of the overlap varies from 200
meV �Ref. 4� to 800 meV.19 According to our ARPES data,
the position of the minimum of the conduction band has been

determined to −40 meV. The position of the maximum of
the valence band has been evaluated at 30 meV. To ensure
charge neutrality in the system, that is, an equal number of
holes in the valence band and electrons in the conduction
bands, our valence band should have its maximum at about
380 meV �this comes from a calculation similar to that done
above for the chemical potential shift� provided that the
maximum of the conduction bands remains at −40 meV.
This results in an overlap of 420 meV which is of the same
order of magnitude than DFT. As shown by Di Salvo et al.,3

deviation from the optimal conditions of sample growth pro-
vokes an excess of Ti atoms which in turn decreases the
transition temperature Tc of the system. In our case, an ex-
cess of about 1% of Ti can explain the slightly lower Tc we
observe in our samples.12 A simple calculation shows that a
valence band having its maximum at 30 meV is then reason-
able provided that these excess Ti atoms give their 3d elec-
trons to fill this band. The assumption according to which
doping electrons go preferentially to the valence band is ac-
tually supported by the fact that excess atoms reside in the
van der Waals gap where they build bonds with the neigh-
boring Se atoms.20,21 Figure 8 illustrates the alternative case
of an ideal �nondoped� system with an overlap of 420 meV
in the CDW phase with moderate excitonic effects. Disper-
sions of this ideal compound are plotted with the correspond-
ing SWs for �=20 meV. This has to be compared with Fig.
4�b� describing the similar situation for the overdoped sys-
tem. At �, the situation is very different above EF. In the
ideal system, the backfolded conduction band c3 follows the
top of the original valence band with a high SW. However,
this band is located in the unoccupied states, being thus
nearly invisible to photoemission. In the occupied states, the
valence band v1 is much more similar to its equivalence in
the overdoped system, with the main difference being the
radius of the valence-band parabola near EF. At L, the origi-
nal conduction band c1 of the ideal compound suffers more
from excitonic effects than in the overdoped one, but the
backfolded valence band v1 is so close to it that its SW
compensates for that lost by c1. At L, c3 has a very low SW
but is in any case in the unoccupied states.

In summary, we have compared the cases of an ideal sys-
tem, having an equal number of holes and electrons, and of
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FIG. 8. Band dispersions of the ideal �nondoped� system �see
text� with their corresponding spectral weight at � and L, along �M
and AL directions, respectively. An order parameter of �
=20 meV has been used, describing a CDW phase with moderate
excitonic effects.
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an overdoped system, displaying a large difference in their
normal phase electronic structure near EF. However, once
excitonic effects are switched on �similar to those identified
in the experiment at room temperature already�, this differ-
ence nearly vanishes. From the considerations described
above, it turns out that the best criterion to distinguish be-
tween these two cases is the radius of the valence-band pa-
rabola at � near EF and at room temperature. Looking at Fig.
6�a� �right� indicates clearly that this radius is much smaller
in the experiment than in the ideal system �Fig. 8�, support-
ing the idea that our samples are slightly overdoped.

IV. CONCLUSIONS

Recently intensity maps calculated within the exciton
condensate phase model have been compared with ARPES
data of 1T-TiSe2. Strikingly good agreement gave strong evi-
dence for exciton condensation as the driving force of the
CDW transition.12 In the present paper, we have presented
the theory of the excitonic insulator model generalized to the
three-dimensional case of 1T-TiSe2 with anisotropic band
dispersion. From the Green’s functions of the valence and
conduction bands, we computed the corresponding spectral
functions needed to generate photoemission intensity maps.
The mathematical treatment is similar to BCS theory and the
deduced order parameter in the low-temperature phase de-
scribes the intensity of condensating electron-hole pairs �ex-
citons�. These pairs are created by the electron-hole interac-
tion between the valence band at � and the conduction bands
at L. As a natural consequence of the nonzero momentum of
the excitons, this produces band backfoldings between � and
L which thus tend to be equivalent as the order parameter

increases. It must be emphasized that the CDW produced by
this model is of purely electronic origin and that the spectral
weights transferred between the original and backfolded
bands are large �see Ref. 12 for a more complete discussion
of this subject�. While no real gap opens at the Fermi energy,
it is notably shown that the valence band �original and back-
folded� is shifted in a quasilinear manner to higher binding
energies as the order parameter increases. Such a behavior
could offer a direct way to extract the temperature depen-
dence of the excitonic order parameter. Further investiga-
tions of the model are in progress, notably to tackle the im-
portant question of the origin of the very small lattice
distortion observed by Di Salvo et al.3 �involving ion dis-
placements of hundredths of angstroms�. Preliminary calcu-
lations, based on the electron-lattice coupling in the tight-
binding formalism of Yoshida and Motizuki,22 indicate that
the exciton condensate corresponding to an order parameter
of the order of �=100 meV produces forces on the ions of
the right order of magnitude. Finally, the present paper treats
only the low-temperature condensation phase of the exciton
condensate. However, room-temperature measurements indi-
cate that strong excitonic fluctuations prevail far above Tc,
reminding the behavior of the pseudogap in high-temperature
superconductors above the critical temperature. Their theo-
retical and experimental study promises an interesting exten-
sion of this work.
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